Free and Forced Vibrations of Thick Elastic Plates by Meshless Local Petrov-Galerkin Method

R. C. Batra(a), L. F. Qian(b) and L. M. Chen(b)

(a) Department of Engineering Science and Mechanics, M/C 0219
 Virginia Polytechinc Institute and State University
 Blacksburg, VA 24061, USA

 (b) Nanjing University of Science and Technology
 Nanjing 210094, P.R. China

We have used the Batra-Vidoli higher order shear and normal deformable plate theory to analyze free and forced vibrations of linear elastic anisotropic and homogeneous thick plates under different boundary conditions by using a meshless local Petrov-Galerkin method. Computed results for simply supported plates are found to match very well with the available analytical solutions. Natural frequencies and through-the-thickness distributions of the transverse shear and the trans verse normal stresses computed with equations of the 5th order plate theory have been found to match very well their analytical values. No locking phenomenon is observed and all of the domain and line integrals are evaluated by 8 x 8 and 8 integration points.

References:

- R. C. Batra and S. Vidoli, Higher-order piezoelectric plate theory derived from a mixed variational principle, *AIAA J.*, 40, 91-104, 2002.
- R. c. Batra, S. Vidoli and F. Vestroni, Plane wave solutions and modal analysis in higher order shear and normal deformable plate theories, *J. Sound and Vibrations*, 257, 63-88, 2002.
- L. F. Qian, R. C. Batra and L. M. Chen, Elastostatic deformations of a thick plate by using a higher-order shear and normal deformable plate theory and two meshless local Petrov-Galerkin methods, *Computer Modeling in Engineering and Sciences*, 4, 161-176, 2003.
- L. F. Qian, R. C. Batra and L. M. Chen, Free and forced vibrations of thick rectangular plates by using a higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method, *Submitted for publication*.

.